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Abstract. Embedded systems are becoming increasingly popular due to their widespread
applications. For safety-critical applications an approach is needed to validate the complexity of
VLSI designs at a higher abstraction level. With formal verification we verify that every possible
behavior of the target system satisfies the specification. SMV is a formal verification system for
hardware designs, based on a technique called “symbolic model checking”. It uses an OBDD
(Ordered Binary Decision Diagram) algorithm to check whether CTL property specifications are
met. In this report we investigate the modeling and verification of an embedded system using
Cadence SMV. We constructed a Verilog model of the system by integrating the microcontroller RT
level and the embedded software assembly code level. We then validate our models and verification
by conducting model checking which analyzes essential aspect of the target embedded system.

1 Introduction

Formal methods long have been touted as a means to produce provably correct implementations.
It is only recently, however, with rather more modest claims, that one formal methodel
checking has been embraced by industry. This technology is blossomed from scattered pilot
projects at a very commercial sites, into implementations in at least five commercially offered
Design Automation tools. The use of formal methods to verify hardware design is termed formal
hardware verification [5]. Formal hardware verification has recently attracted considerable
interest. The need for correct designs in safety-critical applications, coupled with the major cost
associated with products delivered late, are two of the main factors behind this. In addition, as the
complexity of the designs increase, an even smaller percentage of the possible behaviors of the
designs will be simulated. Hence the confidence in the designs obtained by simulation is rapidly
diminishing. However, verification has the promise of reducing the simulation time, as well as
increasing the level of confidence in the design. One of the formal design verification techniques
is the process of validating a design by proving properties on it. The goal of this paper is to
accomplish formal hardware verification of a microcontroller using Cadence version of SMV
(Symbolic Model Verifier) [8] as a model checking tool.



In this report, we present a methodology and application of the formal verification of embedded
software using the SMV tool. We model the instruction set of a commercial microcontroller [9] in
the Cadence SMV input language, Verilog. We work out a method for the symbolic verification of
the embedded software, in terms of assembly code, running on the above mentioned processor. We
use the application of a mouse controller software with Microsoft compatible RS232 interface as
an example to demonstrate our approach. Throughout our experiment, we uncovered
inconsistencies between the specification and the implementation in the assembly code [9].

The rest of the paper is organized as follows. In Section 2, we discuss the related work done on
embedded systems. In Section 3, we briefly introduce SMV (Symbolic Model Verifier). We
describe the microcontroller architecture and its mouse controller software application in Section
4. In Section 5 we present the Verilog modeling of the RTL implementation. In Section 6, we
discuss our formal verification approach along with experimental results. Section 7 concludes the
paper.

2 Related Work

Recently, Embedded systems are finding widespread application including communication
systems, factory automation, graphics and imaging systems, medical equipment and even
household appliances. Technological advances in the areas of design and fabrication have made
hardware systems much larger today than before. As faster, physically smaller and higher
functionality circuits are designed, in large part due to progress made in VLSI, their complexity
continues to grow.

In [13] a method for the verification of embedded software correctness was presented. A formal
model for a commercial microcontroller, PIC16C71 [10] from Microchip Inc., was established.
This was done by modeling the instruction set and processor architecture. Embedded software
takes the form of assembly program code to be run on the processor. Specifications are given as
CTL temporal logic formulae. The method had been implemented in the SMV (Symbolic Model
Verifier) [7] model checker and was illustrated by a practical embedded system application: a
mouse controller [9].

In [1], a hierarchical approach to modeling and formal verification of a complete embedded
system at higher levels of abstraction, using Multiway Decision Graphs (MDGS) [3], is proposed.
The approach is demonstrated on the embedded software for the same mouse controller application
as in [13]. In difference to [13] however, the system is modeled and verified at different levels of
the design hierarchy i.e., the microcontroller RT level, the microcontroller Instruction Set
Architecture (ISA), the embedded software assembly code level and the embedded software
flowchart specification. The correctness of the system hardware platform in implementing its
intended architecture is first established by formally verifying the equivalence between the RTL
hardware and the ISA, using the MDG sequential equivalence checking tool. Subsequently, the
particular application embedded in the system is verified by checking the equivalence between the
assembly code and its intended behavior, specified as a flowchart. Furthermore, safety properties
and liveness properties verification is done on the models using the MDG tools. In both [13] and
[2] inconsistencies in the assembly code with respect to the specification, as published in the
application notes of the manufacturer, were uncovered through formal verification. In this paper
we will investigate the verification of the same microcontroller application using a hierarchal
approach based on Cadence SMV.



3 Cadence SMV Description

Cadence SMV is a formal verification system for hardware designs, based on a technique called
symbolic model checking [8]. A formal verification system verifies that every possible behavior
of the target system satisfies the specification. This is in contrast to a simulator, which can only
verify the system’s behavior for the particular vectors provided.

Cadence version of SMV uses Verilog hardware description language to express the system
model. It supports CTL model checking [7]. A specification for SMV is a collection of properties.
A property can be as simple as a statement that a particular pair of signals are never asserted at the
same time, or it might state some complex relationship in the values or timing of the signals.
Properties are specified in a notation called temporal logic. This allows concise specifications
about temporal relationships between signals, and can be automatically verified.

SMV is quite effective in automatically verifying properties of combinational logic and interacting
finite state machines. Sometimes, when the checking of a property fails, the tool will automatically
produce a counter-example. This is a behavioral trace of the finite state machines that violates the
specified property. Thus making SMV a very effective debugging tool, as well as a formal
verification system.

For large designs, especially those including substantial datapath components, the user must break
the correctness proof down into small enough pieces for SMV to verify. There are two mechanisms
provided for this purposecompositionand refinementIn the compositional method, one verifies
temporal logic properties of one part of the system and uses these properties as assumptions when
verifying another part of the system. In the refinement method, one uses a high level model of the
system as a specification, and verifies separately that each system component implements its part of
the high level specification.

A specification is a description of the intended required behavior of a hardware design [4]. Various
formalisms have been used to represent specifications. SMV uses logic-based specification like
modal logic (e.g. temporal logic, extended temporal logic). Other tools use automaton-based
specification.

An implementation description for a task at any given level serves also as a statement of the
specification for a task at the next lower level. In this manner top level specifications can be
successively implemented and verified at each level, thus leading to the implementation of an overall
verified system. By breaking a large problem into smaller pieces that can be handled individually, the
verification problem is made manageable. It effectively increases the range of circuit sizes that can
be handled in practice.

4 Microcontroller and Embedded Software Description

The mouse is becoming increasingly popular as a standard pointing data entry device. Various kinds
of mice can be found on the market, such as optical mice, opto-mechanical mice or trackball mice.
Their basic mechanisms are very similar. The major electrical components of a mouse are:
Microcontroller, Photo-transistors, Infrared emitting diodes, and Voltage conversion circuit. The
mouse can be divided into several functional blocks: Control, Button detection, Motion detection,
Interface signal generation (typically, RS-232), and DC power supply (Figure 1). The intelligence of
the mouse is provided by the microcontroller, therefore the features and performance of a mouse is
greatly related to the microcontroller and the embedded program used to implement the function [9].
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Figure 1: Functional blocks of a serial mouse

4.1 PIC16C71 Microcontroller

The microcontroller under verification is PIC16C71 [10], commercialized by Microchip
Technology Inc. Itis a RISC-like processor having only 35 instructions.The PIC16C71 is an 8-bit

controller, employing a RISC-like architecture Figure 2. There are 36 8-bit wide general purpose
registers, a hardware stack and 15 special function registers (status register, low order 8-bit of the
program counterg(c), 8-bit real time clock counter, etc.) [9]. The hardware stack is 8-level deep
and has 36 bytes of RAM. A total of 35 instructions (reduced instruction set) are available, each
instruction being 14-bit wide. A 1K EPROM memory contains the 14-bit instructions which
compose the program. Each instruction takes one clock cycle to be executed, except for program
branches which takes two cycles. An instruction cycle consists of eight Q cycles (Q1 to Q8). The
instruction is fetched from the program memory and latched into the instruction register in Q3.
This instruction is then decoded and executed during Q4, Q5, Q6, Q7, and Q8 cycles. Data memory
is read during Q6 (operand read) and written during Q7 (destination write). A execution cycle ends
with thepc incrementing in Q8.

4.2 Embedded Software

The embedded software under verification is the mouse controller software application written in
PIC16C71 assembly language [9]. The major tasks performed by the embedded software are:
Button scanning, X and Y motion scanning, and formatting and sending data to the host. To
achieve the above mentioned goals the software is composed of three parts:

* Main program
» SubroutineByte
» SubroutineBit
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Figure 2: PIC16C71 RTL Block Diagram

TheMain program detects any changes in the button status and in the movement counts and
sets arigger flag. TheMain program calls two subroutineByteandBit. The description of the
Bit routine is given below in Figure 3. Thdain calls theBytefive times to send five bytes of
data TheBytecalls the subroutinBit periodically TheByteconverts the parallel data formatted
in the Bit into a serial data on the “Received Dat&0) pin and controls the status &D. If
Trigger flagis clearedRD will always be high and no message will be sent even wBgeis
called. TheBit counts the number of pulses from the outputs of the photo detectors and
determines the direction of movement. The routiehas two subroutineBitx andBity. The
subroutineBitx tracks the right and left movement of the mouse Bitg tracks the up and down
movement. A right movement is detected whéata (XD) is zero during a positive edge of the
XClock(XC) or whenXD is one during a negative edge €. TheBitl section ofBitx detects
the former condition for a right movemeXD being zero during a positive edgeXt). A Right
Flag being set indicates a movement to the right, andt@®untgives the extent of the right
movement. The sectioBitO detects the latter condition for a right movemeXD(being one



during a negative edge fC). Similarly, an up movement is detected whébata(YD) is zero
during a positive edge of théClock(YC) or whenYD is one during a negative edge €. The

Bit0 andBit1 sections oBity detects the two conditions for an up movement, respectively, and
accordingly set th&JpFlag.

X count = Xcount + 1 Xcount = Xcount + 1
Reset RightFlag Reset RightFlag
XD =0/1? 1 0 XD =0/1?

Set RightFlag Set RightFlag

BITY

Figure 3: Flowchart of Bitx of Routine Bit

5 Verilog Modeling

The modeling language used by the Cadence SMV tool is Verilog. Each process is executed based
on the instruction description in [9]. Each instruction in the routine is represented as a process in
Verilog. The operation of each instruction is defined usingtiogluledefinition in Verilog. SMV

allows parallel processing. In order to run through each instruction cycle individually, i.e.
manipulating thepc, each process carries an instruction numbar)(and apc. Also the
manipulation of th@callows us to check the status of properties during each instruction cycle. The
pcvalue, instruction number, source operand and the destination operand are passed as parameters
to the modules. The eight Q cycles in an instruction are described using CASE statements inside
each module.



We first implemented the model of the routiBé at the RT level. The width of registers were
taken according to the given PIC16C71X data sheet [10]. For illustration purposes, the opcode
declared in main module is shown below.

INSTO: process BTFSS (0,pc,Q,EP_out,IR_out,Decode_out,data_bus,alu_output, RA[2));

INSTOis the label for the first instruction to be executed followedW$T1 INST2etc.EP_out
is the 14-bit EPROM that stores the opcode. This is followed by the regid®ersut, and
Decode_outhat stores and decodes the current instruction to be executed respectively. Each
instruction also flows through a bdata_busand an ALU outputalu_output

The opcoddBSF reg[b]sets bitb of the registereg. Processs the keyword used to declare an
instruction in the main module. The complete definition (function) of the above given declaration
in main module is as follows:

module BSF (Inr, pc, Q, EP_out, IR_out,
Decode_out,data_bus, alu_output, flag){
case {
Inr=pc & Q= 1:{
next(Q):= Q+1;
}

Inr=pc & Q= 2:{
next(EP_out):= EP_out;
next(Q):= Q+1;

}

Inr=pc & Q=3
next(IR_out):= EP_out;
next(Q):= Q+1,;

}

Inr=pc & Q=4
next(Decode_out):= IR_out;

next(Q):= Q+1;

Inr=pc & Q=5
next(data_bus[2]):= flag;
next(Q):= Q+1;

}
Inr=pc & Q=6
next(alu_output):= Decode_out;

next(Q):= Q+1;
}

Inr=pc & Q=7
next(flag):= 1;
next(Q):= Q+1;

}

Inr=pc & Q=8:{
next(pc):= pc +1;
next(Q):= 1;

}



At a higher abstraction level, we use process to model assembly programs. For exanBilé the
of Bitx routine contains these instructions:

INSTO: process BTFSS (0,pc,Q,EP_out,IR_out,Decode_out,data_bus,alu_output, RA[2));

INST1 : process GOTO (1,pc,Q,EP_out,IR_out,Decode_out,data_bus,alu_output,BITO );
INST2 : process BTFSC (2,pc,Q,EP_out,IR_out,Decode_out,data_bus,alu_output, CSTAT[2}
INST3 : process GOTO (3,pc,Q,EP_out,IR_out,Decode_out,data_bus,alu_output, BITY);

INST4 : process INCF (4, pc, Q, EP_out, IR_out, Decode_out, data_bus, alu_output, W,
XCOUNT, 1, STATUS[2));

INST5 : process BCF(5,pc, Q,EP_out, IR_out, Decode_out,data_bus, alu_output, FLAGB[3]);

INST6 : process BTFSS (6, pc, Q, EP_out, IR _out, Decode_out, data_bus, alu_output,
RA[3]);

INST7 : process GOTO (7,pc,Q,EP_out, IR_out,Decode_out,data_bus,alu_output, BITY);

INST8 : process BSF(8, pc, Q, EP_out, IR _out, Decode out, data bus, alu_output,
FLAGBI3));

INST9 : process GOTO (9,pc,Q,EP_out,IR_out,Decode_out,data_bus,alu_output,BITY );

The instructions are executed in sequence. The first three instructions detects the rising edge of
clock cycle. Instruction #4 incremen¥Count and instruction #5 resets the right flag during the
rising edge of the clock. The rest of the instructions chelDatais set and then set the right flag.

6 Verification using SMV

SMV uses OBDD algorithm to check whether the CTL specifications are met [8]. We verify the
liveness of the given model using this tool. The following is an example of three CTL properties
we checked again&itl model:

Propertyl: assert G (( RA[2] =1 & CSTAT[2]=0) -> F (XCOUNT =1));
Property?2: assert G (( RA[2] =1 & CSTAT[2]=0) -> F (FLAGB[3] =0));
Property3: assert G (( RA[2] =1 & CSTAT[2]=0 & XDATA=0) -> F (FLAGBI[3] =1));

The assertstatements specify a number of properties that we would like to prove about this
model. Note tha& stands for logical “and” while> stands for “implies”. In addition, th&
operator is used to express a condition that must hold true at some time in the future. The formula
F pistrue at a given time if p is true at some later time. On the other Hampdneans thap is true
at all times. Usually, we redélp as “eventually p” an& p as “henceforth p” [8].

Propertyldescribes that during the rising edge of the clock cycle (RA[2] =1 and CSTAT[2] =0)
the X movement counter (XCOUNT) is incremented by 1 in all cases in the future.piferty
2 we can check that during the rising edge of the clock cycle (RA[2] =1 and CSTAT[2] =0) the
general purpose flag (FLAGB) is resProperty 3asserts that if XDATA =0 is read during a rising
edge of the clock (RA[2] =1 and CSTAT[2] =0) then the right flag (FLAG[3] is setto 1 in all cases
in the future [13]. Table 1 shows the model checking results of verificatidit@fof Bitx routine
using Cadence SMV. This and subsequent experiments are done on a Sun Sparc Ultral with 256
MB memory.



Table 1: SMV model checking experimental results on original software

Properties Verification CPU time (sec) BDD Nodes
propertyl succeeded 2.45 65721
property2 succeeded 2.67 65721
property3 failed 4.79 77662

Through our experiment, we could notice that the test made over the embedded software written
over the piece of micro controller device failed (Table 1). A counterexample by Cadence SMV
notified the error. The error was traced back to instruction #6 which was found to be erroneous.
The operation of the instruction is to be BTFSC instead of BTFSS. The error was subsequently
corrected, and the experiment is conducted again. All the properties succeeded on the corrected
software (Table 2).

Table 2: SMV model checking experimental results on corrected software

Properties Verification CPU time (sec) BDD Nodes
propertyl succeeded 2.45 65721
property2 succeeded 2.67 65721
property3 succeeded 2.84 62821

As further experiment, we conducted model checkingpadperty3 on increasing set of
instruction processes, i.e., ascendingly including each of the four subroutines in the Bit routine
(Figure 3). The results are plotted in Figure 4 which represents a linear variation between the two
co-ordinates, the CPU time and the number of instructions. Table 3 presents the variation in the
verification of this property including CPU time and number of BDD nodes allocated. We have
found out that Cadence SMV is effective model checking tool especially if we are able to break
down a complex design into smaller pieces is needed.

Table 3: Variation in property3 verification with increasing instruction processes

Number of process CPU time (sec) Nodes allocated
10 (BitO of BitX) 2.84 62821
17 BitX) 4.78 98507
27 (BitX & Bitl of BitY) 9.91 199566
34 BitX & BitY) 11.83 238254
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Figure 4: Variation in CPU time with increasing instruction process in checking property3.

Comparison with MDG

An experiment is conducted to have a comparison with the MDG model checking experiments in
terms of time and complexity.

The properties mentioned earlier in Cadence SMV, expressgghig [14] are as follows:

=0)))
X(Rightflag

Property A AGQ(RA.b2=0 & CSTAT.b2=1) -> ( X(Rightflag

=1))

AG means for all states in all part§.means in next state. Note tHatoperty Ais equivalent to
propertyl of Table 2 & Property Bis similar to the CTL property verified in [13]. Table 4
summarizes the performance statistics of the model checking experiments on the specification and
the implementation of the routir@tl of Bitx.The experiments were conducted on SUN SPARC
ULTRAL with 256 MB of main memory.

Property B AQ(RA.b2=0 & CSTAT.b2=1 & XDATA=1) -> (

Table 4: Performance statistics of model checking using MDG tools

Property Verifi%all'ion on VRt_%_Sult_Of CPU time Memory usage No. of
erification (seconds) (MB) MDG Nodes
property A org. impl successful 0.160 1.48 1172
property A cor. impl successful 0.170 1.41 1175
property A spec successful 0.060 0.94 628
property B org. impl failed 0.250 1.51 1323
property B cor. impl successful 0.182 2.35 1250
property B spec successful 0.130 0.98 613
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In this paper, there is only one model, which is the model of the software routine running on the
hardware. Even though, in [2] there are two models, one of the specification and the other of the
implementation, of the software routine, comparing the results obtained in Table 1 with that in
Table 4, show a remarkable reduction in the size of the graphs and the CPU time. Further more,
Thiry and Claesen [13] report the verificationPfoperty Aon theBit routine, run on a 486DX33
machine with 16 MB RAM. The verification time reported was 23 seconds. Table 4 shows that the
properties verified on thBit routine consumed less than a second of CPU time. This demonstrates
the effectiveness in using MDG tools for model checking.

7 Conclusion

Commercial pressure to produce higher quality hardware and software is always increasing.
Formal methods have already demonstrated success in specifying commercial and safety-critical
application software; and in verifying protocol standards and hardware designs. Progress, however
will depend on continuing support for basic research on new specification languages and new
verification techniques. The main challenge in model checking is dealing with the state space
explosion problem. This problem occurs in systems with many components that can interact with
each other or systems with data structures that can assume many different values. In such cases the
number of global states can be enormous. Researchers have made considerable progress on this
problem over the last ten years.

In this report, we present a methodology and application of the formal verification of embedded
software using the SMV tool. We model the instruction set of a commercial microcontroller in the
Cadence SMV input language, Verilog. We work out a method for the symbolic verification of the
embedded software, in terms of assembly code, running on the above mentioned processor. We use
the application of a mouse controller software with Microsoft compatible RS232 interface as an
example to demonstrate our approach. Throughout our experiment, we uncovered inconsistencies
between the specification and the implementation in the assembly code.
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